1.点击下面按钮复制微信号
点击复制微信号
上海威才企业管理咨询有限公司
本课程为高级课程,培训的内容是继中级课程之后学习的,同时提供了更复杂的数据模型来解决实际工作中的商业决策问题。
本课程面向高级数据分析人员,以及系统开发人员。
本课程核心内容为数据挖掘,分类预测模型,以及专题模型分析,帮助学员构建系统全面的业务分析思维,提升学员的数据分析综合能力。
本课程覆盖了如下内容:
数据建模过程
分类预测模型
分类模型优化思路
市场专题分析模型
熟悉建模的一般过程,能够独立完成整个预测建模项目的实现。
熟练使用各种分类预测模型,以及其应用场景。
熟悉模型质量评估的关键指标,掌握模型优化的整体思路。
熟练掌握常用市场专题分析模型:
学会做市场客户细分,划分客户群
数据建模过程
预测建模六步法
选择模型:基于业务选择恰当的数据模型
属性筛选:选择对目标变量有显著影响的属性来建模
训练模型:采用合适的算法对模型进行训练,寻找到最合适的模型参数
评估模型:进行评估模型的质量,判断模型是否可用
优化模型:如果评估结果不理想,则需要对模型进行优化
应用模型:如果评估结果满足要求,则可应用模型于业务场景
数据挖掘常用的模型
数值预测模型:回归预测、时序预测等
分类预测模型:逻辑回归、决策树、神经网络、支持向量机等
市场细分:聚类、RFM、PCA等
产品推荐:关联分析、协同过滤等
产品优化:回归、随机效用等
产品定价:定价策略/最优定价等
属性筛选/特征选择/变量降维
基于变量本身特征
基于相关性判断
因子合并(PCA等)
IV值筛选(评分卡使用)
基于信息增益判断(决策树使用)
模型评估
模型质量评估指标:R^2、正确率/查全率/查准率/特异性等
预测值评估指标:MAD、MSE/RMSE、MAPE、概率等
模型评估方法:留出法、K拆交叉验证、自助法等
其它评估:过拟合评估
模型优化
优化模型:选择新模型/修改模型
优化数据:新增显著自变量
优化公式:采用新的计算公式
模型实现算法(暂略)
好模型是优化出来的
案例:通信客户流失分析及预警模型
分类预测模型
问题:如何评估客户购买产品的可能性?如何预测客户的购买行为?如何提取某类客户的典型特征?如何向客户精准推荐产品或业务?
分类模型概述
常见分类预测模型
逻辑回归(LR)
逻辑回归模型原理及适用场景
逻辑回归的种类
二项逻辑回归
多项逻辑回归
如何解读逻辑回归方程
带分类自变量的逻辑回归分析
多元逻辑回归
案例:如何评估用户是否会购买某产品(二元逻辑回归)
案例:多品牌选择模型分析(多元逻辑回归)
分类决策树(DT)
问题:如何预测客户行为?如何识别潜在客户?
风控:如何识别欠贷者的特征,以及预测欠贷概率?
客户保有:如何识别流失客户特征,以及预测客户流失概率?
决策树分类简介
案例:美国零售商(Target)如何预测少女怀孕
演练:识别银行欠货风险,提取欠贷者的特征
构建决策树的三个关键问题
如何选择最佳属性来构建节点
如何分裂变量
修剪决策树
选择最优属性
熵、基尼索引、分类错误
属性划分增益
如何分裂变量
多元划分与二元划分
连续变量离散化(最优划分点)
修剪决策树
剪枝原则
预剪枝与后剪枝
构建决策树的四个算法
C5.0、CHAID、CART、QUEST
各种算法的比较
如何选择最优分类模型?
案例:商场酸奶购买用户特征提取
案例:客户流失预警与客户挽留
案例:识别拖欠银行货款者的特征,避免不良货款
案例:识别电信诈骗者嘴脸,让通信更安全
人工神经网络(ANN)
神经网络概述
神经网络基本原理
神经网络的结构
神经网络的建立步骤
神经网络的关键问题
BP反向传播网络(MLP)
径向基网络(RBF)
案例:评估银行用户拖欠货款的概率
判别分析(DA)
判别分析原理
距离判别法
典型判别法
贝叶斯判别法
案例:MBA学生录取判别分析
案例:上市公司类别评估
最近邻分类(KNN)
基本原理
关键问题
贝叶斯分类(NBN)
贝叶斯分类原理
计算类别属性的条件概率
估计连续属性的条件概率
贝叶斯网络种类:TAN/马尔科夫毯
预测分类概率(计算概率)
案例:评估银行用户拖欠货款的概率
支持向量机(SVM)
SVM基本原理
线性可分问题:最大边界超平面
线性不可分问题:特征空间的转换
维空难与核函数
分类模型优化
集成方法的基本原理:利用弱分类器构建强分类模型
选取多个数据集,构建多个弱分类器
多个弱分类器投票决定
集成方法/元算法的种类
Bagging算法
Boosting算法
Bagging原理
如何选择数据集
如何进行投票
随机森林
Boosting的原理
AdaBoost算法流程
样本选择权重计算公式
分类器投票权重计算公式
市场细分模型
问题:我们的客户有几类?各类特征是什么?如何实现客户细分,开发符合细分市场的新产品?如何提取客户特征,从而对产品进行市场定位?
市场细分的常用方法
有指导细分
无指导细分
聚类分析
如何更好的了解客户群体和市场细分?
如何识别客户群体特征?
如何确定客户要分成多少适当的类别?
聚类方法原理介绍
聚类方法作用及其适用场景
聚类分析的种类
K均值聚类(快速聚类)
案例:移动三大品牌细分市场合适吗?
演练:宝洁公司如何选择新产品试销区域?
演练:如何评选优秀员工?
演练:中国各省份发达程度分析,让数据自动聚类
层次聚类(系统聚类):发现多个类别
R型聚类与Q型聚类的区别
案例:中移动如何实现客户细分及营销策略
演练:中国省市经济发展情况分析(Q型聚类)
演练:裁判评分的标准衡量,避免“黑哨”(R型聚类)
两步聚类
主成分分析
主成分分析方法介绍
主成分分析基本思想
主成分分析步骤
案例:如何评估汽车购买者的客户细分市场
客户价值分析
营销问题:如何评估客户的价值?不同的价值客户有何区别对待?
如何评价客户生命周期的价值
贴现率与留存率
评估客户的真实价值
使用双向表衡量属性敏感度
变化的边际利润
案例:评估营销行为的合理性
RFM模型(客户价值评估)
RFM模型,更深入了解你的客户价值
RFM模型与市场策略
RFM模型与活跃度分析
案例:淘宝客户价值评估与促销名单
案例:重购用户特征分析
产品推荐模型
问题:购买A产品的顾客还常常要购买其他什么产品?应该给客户推荐什么产品最有可能被接受?
从搜索引擎到推荐引擎
常用产品援藏模型及算法
基于流行度的推荐
基于排行榜的推荐,适用于刚注册的用户
优化思路:分群推荐
基于内容的推荐CBR
关键问题:如何计算物品的相似度
优缺点
优化:Rocchio算法、基于标签的推荐、基于兴趣度的推荐
基于用户的推荐
关键问题:如何对用户分类/计算用户的相似度
算法:按属性分类、RFM模型、PCA、聚类、按偏好分类、按地理位置
协同过滤的推荐
基于用户的协同过滤
基于物品的协同过滤
冷启动的问题
案例:计算用户相似度、计算物品相似度
基于关联分析的推荐
如何制定套餐,实现交叉/捆绑销售
案例:啤酒与尿布、飓风与蛋挞
关联分析模型原理(Association)
关联规则的两个关键参数
支持度
置信度
关联分析的适用场景
案例:购物篮分析与产品捆绑销售/布局优化
案例:通信产品的交叉销售与产品推荐
基于分类模型的推荐
其它推荐算法
LFM基于隐语义模型
按社交关系
基于时间上下文
多推荐引擎的协同工作
产品设计优化
联合分析法
离散选择模型
如何评估客户购买产品的概率
如何指导产品开发?如何确定产品的重要特性
竞争下的产品动态调价
如何评估产品的价格弹性
案例:产品开发与设计分析
案例:品牌价值与价格敏感度分析
案例:纳什均衡价格
品牌价值评估
新产品市场占有率评估
产品定价策略及产品最优定价
营销问题:产品如何实现最优定价?套餐价格如何确定?采用哪些定价策略可达到利润最大化?
常见的定价方法
产品定价的理论依据
需求曲线与利润最大化
如何求解最优定价
案例:产品最优定价求解
如何评估需求曲线
价格弹性
曲线方程(线性、乘幂)
如何做产品组合定价
如何做产品捆绑/套餐定价
最大收益定价(演进规划求解)
避免价格反转的套餐定价
案例:电信公司的宽带、IPTV、移动电话套餐定价
非线性定价原理
要理解支付意愿曲线
支付意愿曲线与需求曲线的异同
案例:双重收费如何定价(如会费+按次计费)
阶梯定价策略
案例:电力公司如何做阶梯定价
数量折扣定价策略
案例:如何通过折扣来实现薄利多销
定价策略的评估与选择
案例:零售公司如何选择最优定价策略
航空公司的收益管理
收益管理介绍
如何确定机票预订限制
如何确定机票超售数量
如何评估模型的收益
案例:FBN航空公司如何实现收益管理(预订/超售)
信用评分卡模型
信用评分卡模型简介
评分卡的关键问题
信用评分卡建立过程
筛选重要属性
数据集转化
建立分类模型
计算属性分值
确定审批阈值
筛选重要属性
属性分段
基本概念:WOE、IV
属性重要性评估
数据集转化
连续属性最优分段
计算属性取值的WOE
建立分类模型
训练逻辑回归模型
评估模型
得到字段系数
计算属性分值
计算补偿与刻度值
计算各字段得分
生成评分卡
确定审批阈值
画K-S曲线
计算K-S值
获取最优阈值
实战篇
电信业客户流失预警和客户挽留模型实战
银行欠贷风险预测模型实战
银行信用卡评分模型实战
结束:课程总结与问题答疑。
联系电话:4006-900-901
微信咨询:威才客服
企业邮箱:shwczx@shwczx.com
深耕中国制造业
助力企业转型
2021年度咨询客户数
资深实战导师
客户满意度
续单和转介绍